
JOURNAL OF 
PURE AND 
APPLIED ALGEBRA 

ELSEVIER Journal of Pure and Applied Algebra 129 (1998) 3545 

The isomorphism problem for commutative monoid rings’ 

Joseph Gubeladze* 
A. Razmadze Mathematical Institute, Georgian Academy of Sciences, Alexidze str.1, Tbilisi 380093, 

Georgia 

Communicated by CA. Weibel; received 28 February 1996; received in revised form 25 October 1996 

Abstract 

By substantial changes and corrections in Demushkin’s old paper the essentially final positive 
answer to the isomorphism problem for monoid rings of submonoids of Z’ is obtained. This 
means that the underlying monoid is shown to be determined (up to isomorphism) by the 
corresponding monoid ring. Thereafter the positive answer to the analogous question for the 
‘dual’ objects - descrete Hodge algebras - is derived. @ 1998 Elsevier Science B.V. All rights 
reserved. 
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1. Introduction 

The isomorphism problem for monoid rings asks whether two monoids are isomor- 

phic if they have isomorphic monoid rings (with coefficients in some ring). Here we 

are concerned with the case of commutative monoids and commutative rings. 

This paper contains an essentially final positive solution of the isomorphism prob- 

lem for finitely generated, commutative, cancellative and torsion free monoids (Theo- 

rem 2.1). But some remarks are in order. 

The problem is mentioned in the very last section of Gilmer’s book [ll]. For 

a decade there was no work on this problem, and it is only recently that papers 

related to the isomorphism problem have appeared, such as [12, 131 (related mostly to 

the non-commutative case) and [ 181 (where we give a positive answer in the special 

case of finitely generated submonoids of Z2). All the authors mentioned above have 

remarked that there is no previous study of the isomorphism problem dated before [ 111. 
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It turns out, however, that as early as 1982 Demushkin claimed the positive answer to 

the isomorphism problem for all finitely generated normal monoids without non-trivial 

units (for definitions see Section 2). 

The proof as presented in [9] contains several ‘spurious arguments’ (Math. Rev. 

84f : 14036). However, it is our goal in the present paper to show that all these spurious 

arguments can be changed by the correct ones, restoring the proof (applicable to the 

general case of not necessarily normal monoids). 

I have reorganized the material in such a way that general (not necessarily normal) 

monoids could be involved. The proof is carried out in ‘pure commutative algebraic’ 

terms and only the basic background is required for reading it (except, maybe, Borel’s 

theorem on maximal tori in linear algebraic groups). For the origin of our “toric” 

terminology the reader is referred to [7, 10, 201. 

In Section 3 an application to the ‘isomorphism problem for discrete Hodge alge- 

bras’ is presented (that for two isomorphic discrete Hodge algebras the corresponding 

defining monomial ideals are shown to be the same modulo a suitable bijective corre- 

spondence of the variables of reference). 

Below N={1,2 ,... }, Z={O,fl,f2 ,... }, and # refers to the number of elements 

in the corresponding set. 

I would like to thank N.V. Trung for bringing to my attention [9] and B. Totaro for 

pointing out the role of Proposition 2.16 in circumventing one of the essential gaps 

in [9] (not mentioned in Math. Rev. 84f: 14036 however). Other essential changes 

include Step 3 and Step 7 in [9] (Steps 1 and 3 in this paper respectively), and our 

use of cl;@/,&) instead of GL(p/p2). (See also Comments 2.17.) 

This paper was written during my stay at the University of Chicago, Fall 1995. 

I would like to take this opportunity thank Richard G. Swan for my invitation, and 

for his strong support during the years. (He also noticed one more hidden gap in 

Demushkin’s arguments that led us to the aforementioned use of the groups GL(p/@) 

with d large.) 

2. The isomorphism problem 

All the considered monoids are assumed to be commutative, cancellative and torsion 

free, that is, the natural monoid homomorphisms 

M+K(M)+Qc3K(M) 

are assumed to be injective, where K(M) denotes the group of quotients of a monoid 

A4 and Q is the additive group of rational numbers. 

For a monoid A4 its biggest subgroup, the group of units, is denoted by U(M). 

If U(M) is trivial, then for any ring R the monoid ring R[M] carries naturally an 

augmented R-algebra structure. Namely, we consider the augmentation R[M] + R under 

which all nontrivial elements of A4 map to 0 E R. 
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Recall that a monoid M is called normal if (writing additively) c E N, x E K(M), 

cx EM imply x E M. It is well known that M is normal iff for any (equivalently, some) 

field k the monoid domain k[M] is integrally closed [ll, Corollary 12.61. 

Theorem 2.1. Let M and N be two finitely generated monoids and R a ring. Assume 
R[M] M R[N] as R-algebras. Then 

(a) MxN if U(M) and U(N) are trivial and R[M] zR[N] as augmented R- 
algebras, 

(b) M MN if M is normal, 

(c) M MN if M is homogeneous. 

(Homogeneous monoids are defined in Step V - Substep 2 below; they include 

polytopal semigroups from [4].) 

We need some preparatory work. 

Step I. As mentioned above, for a monoid M we have the natural embeddings 

where [w refers to the real numbers. The cardinal number r is called the rank of M and 

it is denoted by rank(M). We shall always assume rank(M) < CO. Thus our monoids 

can be thought of as additive submonoids of finite-dimensional rational vector spaces. 

For a monoid M we let C(M) denote the convex cone (in the corresponding real 

vector space) spanned by M and with vertex at the origin 0 E @ [w. 

Lemma 2.2. Let M be a monoid with trivial U(M). Then the following conditions 
are equivalent: 

(a) K(M) is finitely generated and C(M) is a jinite rational convex polyhedral 

cone, 

(b) M is finitely generated. 

Proof (sketch). (b) + (a) is obvious. For (a) + (b) we decompose C(M) into rational 

simplicial cones and use the special case of the implication (a)+(b) when C(M) is 

simplicial (the latter proved by rather straightforward arguments). 0 

The implication (a) + (b) is known as Gordan’s Lemma. We remark that the special 

case when M is normal is considerably easier [7, Section 81. 

Let M be a finitely generated monoid with U(M) trivial and let C(M) be as above. 

We denote by Q(M) the transversal section of the cone C(M) by any suitable hy- 

perplane in the real vector space of reference. G(M) is a finite convex polyhedron 

determined up to projective equivalence [14-161. In this situation for any nontrivial 

element x EM we let Q(x) denote the point of intersection of G(M) with the radial 

ray determined by x (clearly, everything is determined up to projective transformation). 

We have dim( G(M)) = rank(M) - 1. 
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For a monoid M and its element x we denote by x-‘A4 the localization of M with 

respect to X, i.e., x-‘A4 is the smallest submonoid of K(M) containing M and -x 

(writing additively). Thus, 

x-‘M={y+cxIyEM,cEn}CK(M). 

Lemma 2.3. Let M be a Jinitely generated normal monoid with U(M) trivial and let 
x EM, x # 0. Assume G(x) is a vertex of Q(M). Then 

x-‘MFzz XM’ 

for some finitely generated normal monoid M’ with U(M’) trivial; furthermore, @(Ml) 
is a (dim@(M) - I)-dimensional polyhedron obtained by some transversal section of 

the cone with vertex Q(x) spanned by G(M). 

Proof. See [14, Theorem 1.81 and the proof of Proposition 2.6 in [17]. 0 

Let M be a finitely generated monoid with U(M) trivial. Assume W c Q(M) is 

a convex subset. Then we put M(W) = {x E M j x # 0, Q(x) E W} U { 0). M(W) is a sub- 

monoid of M. In case W is a rational convex subpolyhedron of G(M) (i.e., the vertices 

of W are of the type Q(x) for some x EM), the submonoid M(W) c M is finitely gen- 

erated. This follows from Lemma 2.2. 

We recall that a pyramid is a finite convex polyhedron A which is a convex hull 

of a point v and some convex polyhedron P of dimension dim(A) - 1 (equivalently, 

v does not belong to the affine hull of P in the ambient real vector space). In this 

situation v is called a vertex of A and P is called the base of A opposite to v. 

Let M be a monoid and x EM. We shall say that x splits M if there exists a sub- 

monoid N c M such that the homomorphism 

defined by (c, y) H cx + y, is an isomorphism (E+ denotes the additive monoid of 

nonnegative integers). 

If x splits M, then for any ring R the monoid ring R[M] is naturally R-isomorphic to 

the polynomial ring R[N] [X] (N as above). In other words x is a variable for R[M]. 
Observe that if x splits a monoid M, the aforementioned submonoid N CM is 

uniquely determined (notwithstanding whether U(M) is trivial or not). Indeed, N is 

precisely the set of those elements m EM such that m - x is not in M. 
For x and N as above, N will be called a complementary monoid of x. 

Lemma 2.4. Let k be a jeld and M be a$nitely generated monoid with U(M) trivial. 
Assume z EM\(O) and G(M) is a pyramid so that Q(z) is its vertex. Let B denote 
the base of Q(M) opposite to Q(z). Then the following assertions are equivalent: 

(a) dm c k[M] is a principal ideal, 

(b) there is an element x EM\(O) splitting M for which M(B) is a complementary 
monoid and G(x) = @i(z). 
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Proof. (a) + (b). Since z E dm, standard arguments with Newton polyhedra show 

that 

Jzk[Ml=xk[M] 

for some x E M\{ 1) (here the monoid operation is written multiplicatively as we always 

do when the monoid of reference is considered in the corresponding monoid ring). 

Since c.P(z) is a vertex of Q(M), by easy geometric arguments we see that 

Jzk[Ml= Ker(k[M] 5 k[M(B)]), 

where rc is the k-algebra retraction determined by rc(y) = y for y E M(B) and n(y) = 0 

for y E M\M(B). 

Therefore, any element y E M\M(B) admits a representation of the type 

Y =xy, 

for some yi EM. If yi EM\M(B) we find y2 EM such that 

Yl =xy, 

and so on. Hence we obtain a strictly increasing sequence of principal ideals 

which must stop since k[M] is Noetherian. This implies that A4 is generated (as 

a monoid) by x and M(B). Now the vector x does not belong to the real vector 

space R @ K(M(B)) (both sitting in the real space R @K(M)). This shows (b) 

(b) + (a). We leave this to the reader as an easy exercise. 0 

Lemma 2.5. Let k be a field and M be a finitely generated normal monoid with 
U(M) trivial. Assume @(M) is a pyramid with vertex Q(z) for some non-unit (in 
multiplicative terminology) z EM. Assume further that the natural homomorphism 
of divisor class groups Cl(k[M])-+ Cl(k[M],) IS an isomorphism. Then M is split 
by some non-unit x E M for which G(x) = G(z). Moreover, the element x is defined 
uniquely. 

Proof. By Lemma 2.4 everything is reduced to showing that 

~CWI 

is a principal ideal (the uniqueness of x is clear). 

As mentioned in the proof of Lemma 2.4, 

Jzk[Ml= Ker(k[M] 5 k[M(B)]) 

(notation as in the mentioned proof). In particular, dm is a height 1 prime ideal of 

k[M] and, hence, defines an element of Cl(k[M]). The claim above amounts to showing 
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that this is the zero-element of C/(k[M]). Since the mentioned element trivializes in 

CZ(R[M],), it must already be trivial before localization. 0 

For a finite convex polyhedron P and its vertex v, we say that a facet F c P (i.e., 

a face of dimension dim(P) - 1) is visible from u if v @F. We let #v” denote the 

number of facets of P that are visible from v. Clearly, #v” = 1 if and only if P is 

a pyramid for which v is a vertex. 

F(P) will refer to the set of all facets of P. 

Lemma 2.6. Let k be a field and A4 be a finitely generated normal monoid with 

U(M) trivial. Then 
(a) the natural map 

WkWl) + WWl,) 

is an isomorphism, where p c k[A4] is the ideal of augmentation of k[M], 
(b) rank( CZ(k[M])) = #F( Q(M)) - rank(M). 

Proof. For (a) see the proof of Corollary 2 in [6] (see also [l, p. 4751 and [21, 

p. 261). (b) follows from Theorems 16.7 and 16.9 in [ll] (for the direct geometrical 

proof see [16, Part 21). 0 

Lemma 2.7. Let k be a jeld and M and N be two finitely generated normal monoids 
with U(M) and U(N) trivial. Assume f : k[A4] + k[N] is an isomorphism of k-algebras 

and p is the augmentation ideal of k[M]. Then N\f(p) is a free submonoid of N, 
each basic element of which splits N. 

Proof. Let v 1,. . . , v, denote the vertices of Q(N). By the finite generation and the 

normality of N, each of the submonoids 

N({al}),..., N({vn]) c N 

is isomorphic to Z+. We denote the corresponding generators by XI,. . . ,x,,, respec- 

tively. 0 

Claim 1. If xi #f(p), then xi splits N. 

Proof. Assume xi $ f (,a). 
commutative diagram 

k[M] f WI 

First we show that #up = 1. Suppose #vy > 1. We have the 

\ 

WI, 
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So by Lemma 2.6(a) we get 

is an isomorphism. On the other hand, by Lemma 2.3 

Wlx, = k[N’] [X*‘], 

where X is a variable and N’ is a finitely generated normal monoid with U(N’) trivial. 

Moreover, by the same lemma and by the assumption #VP > 1, we get 

#F(@(N’))<#F(@(N)) - 2. 

We have 

CZ(k[N],) = CZ(k[N’] [X*‘]) = CZ(k[N’]) 

(for the standard facts on CZ see [2, Chap. VII]), which by Lemma 2.6 (b) implies 

#F(@(N)) - rank(N) = runk(CZ(k[N])) = rank( CZ(k[N’])) 

= #F(@(N’)) - runk(N’) < #Q@(N)) - rank(N) - 1 

(recall that run&N’) = rank(N) - 1). This contradiction shows #up = 1. Therefore, 

Q(N) is a pyramid for which vi is a vertex. 

Now the same diagram (*) and Lemma 2.5 completes the proof of the claim. 0 

It follows immediately from the above claim that we will be done when we show 

the next 

Claim 2. Let q,.. . ,xi, be those xi which do not belong to f(p). Then N\f(p) is 

the submonoid of N generated by {xi,, . . . ,xi,}. 

Proof. First of all f(p) is a maximal ideal of LEN]. It follows that the submonoid of 

N generated by {xi,, . . . , xik} is contained in N\f(p). We denote this submomoid by 

[Xi,,...JiJ 
Now observe that for any element y EN there exists c E N such that yc belongs to 

the submonoid of N generated by {xi, . . ,;c,}, which we denote by [xi,. . . ,x,J. It is 

clear from the previous claim that 

Assume y q?’ [xi,, . . . , xik]. Then by the remarks above there exists c E N for which 

YC E [Xl ,...,X”l\[Xi,,...,Xi,l. 
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Therefore, yc is divisible by an element from {xi,. . . ,Xn}\{Xi,, . . . ,Xi,}. Then yc E f(p). 

Hence y E f(p). That means 

Lemma 2.8. Let k be a field and M and N be two finitely generated normal monoids 
with U(M) and U(N) trivial. Zf k[M] and k[N] are isomorphic as k-algebras, then 
they are isomorphic as augmented k algebras. 

Proof. Let p denote the augmentation ideal of k[M] (that corresponds to the monoid 

M). Assume 

f : k[M] + k[N] 

is a k-algebra isomorphism. By Lemma 2.7 there exists a submonoid NO c N and 

elements xi , . . . ,xk EN\{ 1) which are transcendental over k[No] such that 

WI = Wol [XI,. . . ,xkl 

and 

No\(l) c fb). 

Let al,..., ak E k denote the constant terms of the elements f-l(q), . . . , f -l(Xk) E 
k[M], respectively (i.e., ai is the image of f-‘(Xi) under the augmentation map 

k[M] + k). Denote by g the k[Na]-automorphism of k[N] defined by 

g(xi)=xi -ai, iE[l,k]. 

Then the constant terms of the elements f-‘g(xi), . . . , f-‘g(xk) E k[M] are all zero, 

in other words, f-‘g : k[N] -+ k[M] is an augmented isomorphism of k-algebras. 0 

Step II: Let k be a field. An algebraic torus of dimension Y E N is an algebraic 

group isomorphic to UT = U(k)‘, where U(k) is the multiplicative group of k. Assume 

A is an affine k-algebra. It will be identified with its natural image in S-‘A for any 

multiplicative subset S c A \ { 0) (by an afhne algebra we mean a finitely generated 

k-algebra which is a domain). 

An embedded torus (in Spec(A), or for A) is a pair r = (S, a) where S CA\(O) is a 

multiplicative subset and ~5 = {al, . _ . , a,.} c S-‘A is an algebraically independent subset 

over k for which the following conditions are satisfied: 

(a) S-‘A=k[a~‘,...,a~‘], 
(b) A is generated as a k-algebra by a certain finite system of Laurent monomials 

in ai. 
(Unless the contrary is stated explicitly, we always mean ‘pure’ monomials, i.e., those 

with scalar factor 1.) 
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Assume Xl , . . . ,X, are variables. The condition (b) above means that A is an isomor- 

phic image of some monomial subalgebra of the Laurent polynomial ring k[X,*‘, . . . , 

X,‘;‘] under the map 

k[X,‘t’ ,...,Xr*‘]+S-‘A 

determined by Xi H ai. 

Observe that we do not require normality of A. Observe also that r = dim(A). 

Later on M(Z) will refer to the multiplicative submonoid of A which consists of all 

those elements that are (Laurent) monomials in ai. Thus, 

A = k[M(E)] 

in the sense that M(Z) spans A as k-algebra. Simultaneously, A can be thought of as 

the monoid k-algebra corresponding to the monoid M(Z) (this justifies our notation). 

Clearly, the two conditions U(A) = U(k) and U(M(Z)) = 1 coincide. 

Given a k-algebra A, GA will denote the group of all k-algebra automorphisms 

ofA. 

Let zr = (&,a) and r2 = (SZ, &) be two embedded tori in S’ec(A). Assume g E GA. 

We shall write g*rt = r2 if g can be extended to a k-algebra isomorphism between 

S;‘A and ST’A: 

S,-' A - -_----- -. S,-’ A . 

Any embedded torus r = (S, a) defines an embedding 

in a natural way. Namely, we let U,. act on A as follows. Any element l= (51,. . . , 5,) E 

Ur defines a k-automorphism of S-‘A by putting 

ai H hai, i E [l,r]. 

This gives rise to the embedding 

Ur -+ Gs-lA 

and each of these automorphisms restricts to a k-automorphism of A. Hence, the homo- 

morphism of groups 
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Finally, this homomorphism is injective because any automorphism of A can be lifted 

to one at most automorphism of S-‘A. 

Later on we denote by z* the image of the corresponding embedding 

Lemma 2.9. Let z = (S,a) be an embedded torus for some afine k-algebra A (k a 
field). Then z+ consists precisely of those k-automorphisms of A which act on elements 
of M(a) by multiplication on scalars, i.e., g E z* tf and only tf 

xEM(a) =s g(x)=sxx 

for some s, E U(k). 

Proof. Trivial. 0 

Lemma 2.10. Let k be an infinite jield. Assume A is an afine k-algebra, 71 = (Sl, a) 
and 72 = (S2,b) are two embedded tori for A and g E GA. Then the following three 

conditions are equivalent: 

(a) g*zl = 72, 
(b) gg’r;g=z; (in GA), 
(c) M(E)zM(b) (as monoids). 

Proof. (a) j(b). Assume g*rr = ~2. We shall use the same letter g for the extension 

of g to the localization SF’A. Therefore, we have the commutative diagram: 

A 
9 *A 

n I I n 

S,-’ A 

where b= {bl,. . . , b,} and E= {al,. . . ,a,.}. Since any isomorphism between Laurent 

polynomial algebras must map monomials to monomials (in general not to ‘pure’ ones), 

just because monomials are the only units in these algebras, the diagram above and 

Lemma 2.9 immediately imply 

for any <* E 2;. Hence g-‘z;g c 7;. The inclusion 7; c g-‘T;g is equivalent to the 

inclusion gr; g-l c 77, and the latter follows from the arguments above applied to the 
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commutative diagram: 

A- 
C’ 

A 

n I 
S,-’ A 

I n 

S,-’ A 

II II 
k[b;’ , . . . , b,+‘] 9 k[a;' , . . . , $1. 

(b) + (a). Assume gg’rfg = r;. First let us show that g transforms monomials into 

monomials (of the general type), i.e., for any element x E M(b) its image g(x) is of 

the type sy for some s E U(k) and y EM(Z). 

Assume to the contrary that there is an element x E M(b) such that in the canonical 

k-linear expansion of g(x) with respect to elements of M(Z) there occur two distinct 

elements yi, yz E M(5). Since the field k is infinite one easily concludes that there 

exists c* E ZT such that 

and 

for some distinct elements si and s:! of U(k). Therefore, there does not exist s E U(k) 
for which 

t*m)) = s&h x E M(4, 

or equivalently, there does not exist s E U(k) for which 

(g-i (*g)(x) = sx, x EM(Z). 

But this contradicts the assumption g-izTg = z; because of Lemma 2.9. 

Having established the claim on monomial-to-monomial transformations, there only 

remains to notice that the unique extension of g to &‘A has its image in SF’A, that 

is, g*ri = ~2. 

(a)*(b) W(C). That M(Z) MM(~) is implied by (b) immediately follows from the 

aforementioned ‘monomial-to-monomial’ nature of g. Conversely, if M(Z) M M(b), then 

any monoid isomorphism between M(E) and M(b) extends to a k-automorphism of A 
that fits in the square required for (a). 0 

Step III: Let k be a field, A an affine k-algebra and r = (S, G) its embedded torus. A 

maximal ideal p7 c A is called a stable point of r if U(M(C)) = 1 and ps is generated 

by M(G)\ { 1). Thus p7 (if it exists, i.e., if U(M(G)) = 1) is determined uniquely. 
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Clearly, 

A/p., = k. 

The finite generation of the ideal ,ur implies that of the k-linear space ,uJp$ for any 

natural number d > 2. We let 

GL(M:) 

denote the group of automorphisms of this k-linear space. We also put 

GA,~={~EGA I~(P~)=PT}. 

GA,? is a subgroup of GA and one has the natural group homomorphism 

for any natural number d 2 2. 

Put KCd) = Ker (h’d’) 7 T . 

Lemma 2.11. For any embedded torus z = (S, a) having a stable point and any natural 

number d 2 2, the following hold: 

(a) t* c GA,T, 
(b) Kid’ n z* = 1. 

Later on we will denote by k’f<d(a) the set of those elements of M(Z) which are 

presentable as products of at most d - 1 non-unit elements from M(E). 

Proof. The inclusion is trivial. In order to show the equality above, observe that the 

space pL,/p: can be thought of as the k-linear span of M<,(a). The latter in its order 

can be thought of as the k-linear subspace of A generated by &d(a). 

Now let <;,<c E r* for some tr,& E UT. If hid)(<;) = h$““([;), then <T and [; act 

identically on &d(a). In partiCUlar, they act identically on the subset k!f,z(a) Chf<d 

(a) which is nothing else but the minimal generating set (always uniquely determined) 

of M(E). But, as remarked earlier - just before Lemma 2.9 - we then have 5; = c;, 

that means Kcd) n r* = 1. ‘I 0 

Observe that GL(p,/,uf) and h$‘) depend only on the stable point p7 and the natural 

number d. GA,~ in its order depends on pL, only. Thus, if two embedded tori ri and r2 

have the same stable point, then they define the same homomorphism h$? = h$f) for 

any natural number d. 
For simplicity of notation, we put 

hCd’(z) = hCd)(z*). 7 

Lemma 2.12. Let k be a field of infinite transcedence degree over its prime subjield. 
Assume A is an ajjine k-algebra and ~1 = (Sl, 5) and 72 = (&,b) are two embedded tori 
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in Spec(A) which have the same stable point, say p. Assume further d > 2 is a natural 
number. Zf hcd)(zl) = hcd)(z2), then T; and z; are conjugate in GA. Moreover, for all 

sufJiciently large d, depending only on 71, the equality hcd)(zl) = hcd)(zl) implies that 
7; and 7; are conjugate in GA by an element from KJ? ( = K!,d)). 

Proof. As mentioned above the subsets M,2(4 C M,d(c?) and M,2(b) C h&d(6) can 

be thought of as the minimal generating sets of the monoids M(C) and M(6) and as 

bases of the k-linear space ,u/p2 simultaneously. In particular, we see that M(C) and 

M(8) have the save number of minimal (i.e., indecomposible) generators, say n. 

Assume 

1x1 , . . . ,a} =M<2(;) 

{Y 1,...,yn}=M<2(~). 0 

Claim 1. For each i E [ 1, n] there exist j E [ 1, n] and s E U(k) such that yi = sxj mod pd. 

Proof. Both sets M<d(L?) and M,d(b) constitute bases of the same k-linear space 

n_Llpd. At the same time M,z(L~) and M,2(b) constitute k-bases of p/p2. Thus for 

each i E [ 1, n] there exist j E [ 1, n] and s E U(k) such that SXj is a summand in the 

k-linear expansion of yi modulo p2 in the basis M,z(C). But then sxj is a sum- 

mand in the k-linear expansion of yi modulo pd in the basis M<d(a) as well. Our 

claim is exactly that there are no other summands. Assume to the contrary that there 

exists x E hf.&ii) \ {xj} which is involved in the aforementioned linear expansion. 

We have 

Xj = 

k=l 

and 

x= 

k=l 

for some distinct vectors 

P=(Pl,...,Pr) 

and 

4=(41 ,...,qr) 

in Z’. 
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For any 5 E Ur we let {* denote the image of 5 in r; and <** that in r;. For 

t=(<l,..., cl,) E Ur we have 

and 

Since k is infinity, we easily see that there exists 5 E Ur such that 

k=l k=l 

In this situation 

5*(ri)l~i E Q(4\k 

where Q(A) denotes the field of fractions of A. 

On the other hand, by the conditions of the lemma there exists q E UT such that 

t*(.Yi) = V**(.Yi>. 

But by Lemma 2.9 we see that 

q**(Yi)/Yi f U(k), 

a contradiction. Claim 1 has been proved. Cl 

Applying Claim 1 to the other yi, we see that there is an enumeration of the Xi’s 

and Y~‘s for which 

yi = cixi mod ,LL~ 

for some ci E U(k). We fix such an enumeration. 

Our condition hcd)(rr ) = h(d)(r2) implies the following: 

(1) For any 5 E Ur there exists q E U,. such that 

(the quotients are considered in Q(A)). 

By Lemma 2.10, the first part of Lemma 2.12 is proved when it is shown that the 

elements xi and yi are subject to the same relations in the monoids M(a) and M(6), 

respectively. 

Assume 

Xi = J&y, i E Lnl, 
j=l 
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and 

Y’==J-Jb,4”, iE [l,n]. 
j=l 

We put 

Then M(Z) and M(b) are isomorphic to the additive submonoids of E’ generated by 

{pi}jLt and {qi}y=i, respectively. What we have to show is that there exists a Q-auto- 

morphism of the rational vector space + : Q’ +Q’ such that $(pi)=qi for iE [l,n]. 

Next we translate condition (1) above into terms of pi and qi as follows: 

(2) For my 5=(51,..., &) E Ur there exists q = (VI,. . . ,q,) E U,. such that tfi = q* 

for iE [l,n], where 

p = Ij tip?‘, V”‘=fiII,po, iE[l,n]. 
j=l j=l 

Now the following claim completes the proof of the first part of our lemma. 

Claim 2. Let pi = (PiI,. . . , pin) and qi = (qil,. . . ,qin) be two arbitrary systems of 

non-zero elements of Z’ (i E [l,n]). If they satisfy condition (2) above, then there is 

a Q-linear automorphism $ : Q’ + 62’ for which 

+(Pi)=Icl(Cli) 

for i E [l,n]. 

Proof. Without loss of generality, we may assume 

{P l,...,Pr)CQr 

is a Q-linear independent subset (observe that r 5 n with r = n if and only if A is 

a polynomial ring over k). Since k has infinite transcendence degree over its prime 

subfield, we can pick an element 

t=(tl,...,L)Eur 

such that {tt,...,&} is an algebraically independent system over the mentioned prime 

subfield ka c k. In this situation the subset 

{<P’,...,5PT}~U(k) 

will be transcendental over ko as well. By condition (2) 

gpi =rjqi, iE [l,n], 
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for some r~ E UY. In particular, 

{q4’,... , vqr) c U(k) 

is algebraically independent over b. The latter is equivalent to the following pair of 

conditions: 

(a) {VI,... , Q.} c U(k) is algebraically independent subset over ks, where rl= 

cm> . . ..vr>. 

@I (41, . . . , qr} c Cl” is a Q-linearly independent subset. 

We need the condition (b) only. It implies that the bijective mapping 

Pi H qiy i E Lrl, 

gives rise to a Q-linear automorphism, say $, of Q’. Let us show that 

*(Pi)=qi 

for i E [l,n]. 

For each iE[l,n] there exist &~Q,j~[l,r], such that 

qi = 2 ilijqj. 

j=l 

Equivalently, 

Ziqi = C Zijqj, i E [ 1, n] 
j=l 

for some I, E Z and Zi E Z\ (0). It only remains to show that 

ZiPi = 2 ZijPj, i E [l,n]. 
j=l 

But the latter equalities directly 

tpI = qqi, iE [l,n] 

follow from the equalities 

and the fact that {I,...,& are algebraically independent over ks. 0 

We have completed the proof of the claim that rT and r; are conjugate in GA. Now 

we show that the conjugating element can be chosen from K,(p) (=#I) if d is large 

enough with respect to 21. 

The proof of Lemma 2.9 and the arguments above show that xi H yi extends to 

a monoid isomorphism g : M(i) %M( 6) while yi = cixi mod /A’ for some ci E U(k) 

(i E [ 1, n]). We let the same letter g denote the corresponding isomorphism k[M(Z)] 2 

Q&f(i)]. It is clear that g induces the identity automorphism of p/,ud if and only if 

ci = 1 for all i. That is, g E K!f’ if and only if ci = 1 for all i. 
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We write 

g : Xi H yi = CiXi + i?Zi 

for some mi E pd. Since the monoid M(G) is finitely generated, there is a finite system 

of ‘basic’ relations between the Xi, i.e., there is a finite system of pairs of monomials 

in new variables zi, say 

(JqZl,...,Zn), ~h,...J?d), j~[LJl 

for some J E N, such that all the relations between the xi are obtained (in the obvious 

sense) from the ones 

y:.(a,..., xn) = &1,...,xn), j~[l,Jl. 

(The equations are considered in M(G) c A; one just uses the fact that k[M(Z)] is 

Noetherian.) 

For any element 4 E k[M(G)] we let supp(~) denote the set of the elements from 

M(G) that are involved in the canonical k-linear expansion of 4. 

Claim 3. For any jinite system of monomials { y(z1,. . . ,zn)}j there exists a natural 
number do such that 

q(xl,..., &)Es~pp(~j(wl + ~l,...,W, + 42)) 

for all indices j and arbitrary elements si E U(k) whenever d > do and Ii E pd (i E 

[Lnl). 

Proof. If d is large enough, then { q(xi ,. . . ,xn)}j E&~(Z). On the other hand, it is 

clear that pd rlM(Z) c M(a)\M<d(@. Therefore, for such natural numbers d the mono- 

mials q(sixi,. . . , s,x,) will survive in the canonical k-linear expansions of ~?$(sixl + 

11,. . . ,s,x, + l,,), respectively. Hence the claim. 0 

Now we complete the proof of Lemma 2.12 as follows. We know that 

T;(YI,...,Y,) = ~~(YI,...,Y,), ~ELJI. 

Using Claim 3 we come to the conclusion that 

fq:.(Cl,..., 4 = f$Ccl,...,c,), jEP,Jl, 

providing d is large enough with respect to ~1. In this situation Xi ct cixi defines an 

element of r:, say l*. Then (as the proof of Lemma 2.9 shows) g(t*)-’ is the desired 

element of Kcd). 0 ‘TI 

Step IV: Let k be an algebraically closed field. One knows that if we are given 

two distinct algebraic tori (over k) T c 8’ then #(U’/T) = cc. Indeed, since k is al- 

gebraically closed all tori are divisible. Then so is the quotient group (T//T) and a 

non-zero divisible group is infinite. 
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Assume k is as above, d is a natural number, A is an affine k-algebra and t its em- 

bedded torus having a stable point. By Lemma 2.1 I, Kid’ n z* = 1. Thus, the restricition 

of hLd) to r* is an isomorphism between r* and /I. We put 

ZYcd) = Im(hcd’ : GA,~ + GL(pJpd)) 7 z T 

(notation as above). 

Lemma 2.13. Let k,A and z be as above. Then hcd)(z) is a maximal torus of H$” 
for all suficiently large d E N. 

Proof. Assume there is a torus T c H!d’ strictly containing htd)(z). Then by the remark 

above 

#(U/hcd)(z)) = 00. 

Therefore, 

#(NH,e(h’d’(z))/h’d’(Z)) = CO, T 

where for an extension of groups A c B we let NB(A) denote the normalizer of A in 

B, i.e., 

Clearly, if f : C --) B is a surjective group homomorphism, then 

f -‘(MA)) = &(f -‘(A)). 

Therefore, if #(&(A)/A) = CO, then #(Nc( f -‘(A))/f -‘(A)) = cc providing f is sur- 

jective. 

Applying the above formula to the homomorphism hcd)(z) and using the equality 

(h’d’)-‘(h’d’(r)) = Kzd)r* z 2 

which is a consequence of the normality of Kid’ in GA,~, we get 

#(No (KCd)r*)/KJd)z*) = co. A.7 7 

(Here we put KJd)z* = {glgp 1 gr E KJd’, g2 E z’}.) 

Let ql,q2,... be elements of NG~,,(K!~‘~*) which represent different elements in 

NGA ,(KCd)~*)/KCd)z* , T r . 

For each i E N we have 

K,(d)r* = qi:‘(K,(d)~*)qi z K;d)(q;lz*qj). 

Put 

ti = qi’T*qi. 
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Claim 1. For each i E N there exists an embedded torus Ti (for A) which has the 

same stable point as z and such that zr = ti. 

Proof. Assume r = (S, a), Z = {al,. . . , a,}. We put 

Si = qil(S) 

and 

a: = {qil(al),...,qil(ar)}. 

Then we have the following commutative square: 

S,-‘A s-!4 

II II 
M(q;‘(a,))“, . . .&;'(4)"1 -ya~‘,...,a:l]. 

In other words, we have the embedded torus 

Zi = (Si, ii) C Spec(A) 

and the equality 

By Lemma 2.10 we get 

ti = qlT$*qi = Z;. 

It only remains to show that ri has the same stable point as r. But the stable point of 

ri is the maximal ideal of A generated by qz~l(M(G))\{ l}, that is, 

-1 
PLr, = 4i PT3 

and we are done because qi E GA,~. 0 

Let ri be as above. Because of the equality 

@r* = K(d)r: 
z ‘T I 3 

we have hcd)(z*) = hcd)(zT). So by Lemma 2.12, for each i E N there exists pi E K!d’ 
such that 
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providing d E N is sufficiently large with respect to r. That means qipil E Nc~,,(z*) 

for each i E N (d as above). 

Let us show that qipil represent different elements in 

Indeed, if (qipil)(qjp,~l)-l E r* for some distinct i and j, then the inclusions pi, pj E 

Kcd) and the normality of KCd) in GA,* would imply * T 

qiqi’ E Kzd)z*, 

a contradiction. 

Thus having assumed h(d)(r) is not a maximal torus in HJd’, we arrive at the con- 

clusion 

#(NG&* j/r*) = CO. 

Now the following claim gives us the desired contradiction. 

Claim 2. #(NG&(Z* )/Z* ) < 03 for any embedded torus z. 

Proof. By Lemma 2.10 NoA,, consists precisely of those k-automorphisms g of A 

for which g*r = r. One immediately sees that the equality g*r = r is equivalent to the 

requirement: g(x) is of the type sy for any x E M(Z), where s E U(k) and y E M(5). 

We define the map 

@ : h&(7*) + ht(li’f(ii)), 

where Aut(M(G)) is the group of monoid automorphisms of M(C), as follows: 

(@(g))(x) = Y9 

where g(x) = sy for x, y, E M(a), s E U(k). 

Straightforward arguments show that 0 is a group homomorphism and Ker(O) = z*. 
Therefore, 

NGi,,(~*)/~ * z Aut(M(2)). 

Since M(C) has a unique minimal generating set Aut(M(Z)) injects into the group of 

permutations of this minimal generating set. Hence Aut(M(i)) is finite. 0 

Step V: Now we are ready to prove Theorem 2.1. 

Substep 1. (a) + (b). If R[M] =R[N] and A4 is normal then N is normal as well 

(just pass to some field of coefficients via scalar extension). So we have to show that 

if A4 and N are two finitely generated normal monoids, R is a ring and R[A4] x R[N] 
as R-algebras then A4 zz N. 

Let us show that there exist two finitely generated normal monoids Ml and Ni only 

with trivial units such that A4 M U(M) x Ml and N M U(N) x Ni . 
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Indeed, the normality condition implies K(M)/U(M) is torsion free. Hence U(M) + 

K(M) is a split monomorphism (recall that rank(M) < 00). Assume 

K(M) = U(M) @K,. 

Now it is straightforward to show that 

U(M) x (Kt nM)=: 

and that Kt nA4 is a finitely generated normal monoid with trivial units. The same 

arguments apply to N. 

Assume we are given an R-isomorphism 

f : R[M] + R[N]. 

By a scalar-extension we can assume R is a field, say k. Due to the aforementioned 

remarks f can be rewritten as follows: 

f : k[U@f)I[MI + W(WIWd 

for Mt and Nt as above. One easily shows that 

WWVfNMl) = U(k) @ U(M) 

and 

WW-W~d) = U(k) @ U(J-0 

(see [ll, Theorem 1.111, for instance.) 

Since f preserves units we conclude that f restricts to a k-algebra isomorphism 

between k[ U(M)] and k[ U(N)]. Clearly, rank( U(M)) = rank( U(N)). 

Let RI denote k[U(M)]. Identifying k[U(N)] with RI (via the just mentioned iso- 

morphism) we obtain the RI-algebra isomorphism 

g:RlMI + Rl[NI. 

By a suitable scalar-extension we can pass to a kt-algebra isomorphism 

for some field kl. By Lemma 2.8 we can assume h is an augmented kt-algebra iso- 

morphism. Then (a) implies Ml =Nt. Since we also have U(M) M U(N) (they both 

are free abelian groups of the same rank), we obtain the desired isomorphism h4 z N. 

Substep 2: (a) + (c). First we have to define homogeneous monoids. 

Definition 2.14. A finitely generated monoid A4 is called homogeneous if M is iso- 

morphic to an additive submonoid of [Wrfl (for some nonnegative integer Y) which is 

generated by a finite system of elements of the type (x, 1) E Wfl where x E Z’. 

Clearly, homogeneous monoids have no nontrivial units and the only rank 1 homo- 

geneous monoids are those isomorphic to Z+. The name ‘homogeneous’ comes from 
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the observation that for such a monoid M and a ring R the monoid ring R[M] carries 

naturally a graded structure where all the minimal generators of M have degree 1. 

One easily observes that a monoid M is homogeneous if and only if it is finitely 

generated and there exists a codimension 1 hyperplane H in the real space R @K(M) 

that avoids the origin and contains a generating set of M as a set of rational points 

in some Euclidean coordinate system of H. Moreover, the mentioned generating set is 

automatically the minimal generating set of M. 

In the special case, the mentioned minimal generating set of M consists of all lattice 

points in some finite convex lattice polyhedron P c H with respect to some Euclidean 

coordinate system of H we obtain exactly what was called a polytopal semigroup 
in [4]. 

Here is one more alternative definition of a homogeneous monoid: a monoid M 
is homogeneous iff it is finitely generated, has trivial U(M) and the convex hull in 

R @K(M) of the minimal generating set of M is a (finite, convex) polyhedron of 

dimension rank(M) - 1. 

Let M be a homogeneous monoid, {xi , . . . ,xn} be its minimal generating set and P 
the aforementioned convex hull. An element xi E {xi , . . . ,xn} will be called extremal 

if it is a vertex of P. 

Lemma 2.15. Let k be a field and M and N two finitely generated monoids. Assume 
k[M] M k[N] and M is homogeneous. Then U(N) = 1 and k[M] M k[N] as augmented 

k-algebras. 

Proof. Assume 

f : k[N] + k[M] 

is a k-algebra isomorphism. This isomorphism can be extended to the normalizations 

of the domains k[M] and k[N]. But it is an immediate consequence of the general 

property of normalizations, we mentioned in the beginning of the section, that 

k[M] = k[&] 

and 

k[N] = k[#], 

where the bar refers to the appropriate normalization. Now by Lemma 2.2 both A? and 

fl are finitely generated normal monoids (clearly, with only trivial units). For a monoid 

L, which is finitely generated and has not non-trivial units, we let gen(L) denote its 

minimal generating set. Observe that homogeneuity of M implies 

gen(M) c gen(Q). 

By Lemma 2.7, &?\ f( -) v is a free submonoid of A? each basic element of which splits 

k?, where 7 is the aforementioned extension of f and i; is the augmentation ideal of 
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k[N] (with respect to the monoid N). Obviously, 

gen(M\ r( ij)) C gen(M). 

Easy arguments ensure that any element of gen(u\ f( v)) is a generator of a submonoid 

of A corresponding to some edge of C(u). But C(M) = C(u). These remarks imply 

that gen(M\ T( 5)) is a subset of all extremal elements in gen(A4). Therefore, M\f(v) 

is a free submonoid of M each basic element of which splits M. Now the same 

arguments as in the proof of Lemma 2.8 show that there is an augmented k-algebra 

homomorphism g : k[M] + k[N]. 0 

After Lemma 2.15 the implication (a) + (b) becomes obvious. 

Substep 3: Here we prove the claim (a). 

Let R, A4 and N be as in Theorem 2.1 (a). By a suitable scalar extension we can 

pass to a k-algebra isomorphism 

f : k[M] + k[N] 

for some algebraically closed field of infinite transcedence degree over its prime sub- 
field. 

Put A = k[N]. Let ci= {al,. . . ,a,} and b = {bl,. . . , b,.} be two arbitrary basis’ of 

the free abelian groups K(N) and K( f(M)) respectively (considered as multiplicative 

subgroups of the field of fractions of A). 

In this situation we are given the two embedded tori in Spec(A) 

z1 = (N,i) 

and 

72 = (f@o, h. 

That f is augmented precisely means ri and 72 have the same stable point, say ,u. 

Let d 2 2 be a natural number and let Hr’ denote the subgroup of Hi(p) ( =Hj;d)) 

generated by /I and hcd)(r2) (notation as in Step IV). As remarked just before 

Lemma 2.13 /#)(rt) and hcd)(r2) are two r-dimensional tori in GL(p/#). 

Claim. /#)(zl) and lhd)(z2) are algberaic tori in GL(p/pd). 

Proof. Let z be any embedded torus in Spec(A) with a stable point v. We will show 

that h(d)(r) is an algebraic torus in GL(v/vd) (for any natural number d 2 2). We know 
that v/vd can be thought of as the k-linear subspace of A spanned by M.&(E), where 

we put z = (S, C). Using Lemma 2.9 we see that in this basis hcd)(r) consists of diag- 

onal automorphisms of GL(v/vd). Fixing the mentioned basis we fix the corresponding 

identification 

GL(v/vd) = GL,(k) 
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for m =#S<d(C). In this way the group hcd)(r) is identified with a subgroup of 

&g,(k) = um. 

The homomorphism hid’ : z + Urn can be written up explicitly. Assume 

M<d(C) = (Xl,. . . ,%I) 

for some monomials 

xi=ccp” . ..crpII. iE[l,m], 

where we assume E={ci,...,c,}. Then h, @) is given by 

We, in particular, see that hid) is an algebraic map. We know also that hi’) is injective. 

Hence the claim. 0 

Now to complete the proof of Theorem 2.1 (a) we need the following fact. 

Proposition 2.16. Any pair of connected algebraic subgroups of an algebraic group 

generates a closed (and connected) subgroup. 

Proof. This proposition is a special case of Proposition 7.5 in [19]. 0 

Returning to our situation we conclude from Proposition 2.16 that Hf’ is Zariski 

closed in G-Q/,&). By Lemma 2.13 the two tori /@(ri) and h@)(q) are maximal 

in H@) ( =Z@) h 

in $I. 

w enever d is sufficiently large. Therefore, they are maximal 

But by Borel’s Theorem all maximal tori in a linear algebraic group 

are conjugate [19, Corollary 21.3(A)]. So for d large there exists y E Hy’ such 

that 

y-‘hCd)(q)y = hCd)(q). 

Assume y = h!?(g) for some g E GA,r, and consider the subgroup 

g-‘r;g c GA,~, . 

As in Claim 1 in the proof of Lemma 2.13, there exists an embedded torus rs = (S,E) 

in Spec(A) for which 

and which has the same stable point as rt . We have hcd)(zo) = hcd)(T2). On the other 

hand, by Lemma 2.10 (c) the two monoids M(E) and M(a) are isomorphic. Simulta- 

neously, by Lemma 2.12 there exists gi E GA,~, such that 

g-‘z;g = z;. 
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Then again by Lemma 2.10 (c) the two monoids M(c) and M(g) are isomorphic. Thus, 

finally, we have 

Comments 2.17. (a) Lemma 2.8 is equivalent to the claim in Step 3 of [9]. However 

the proof as presented in [9] is ‘spurious’ (Math. Rev. 84f: 36). Our arguments via 

divisor class groups are completely different. 

(b) As mentioned in the introduction we use G&/p!) instead of Demushkin’s use 

of G&/p:). The point is that the arguments in the proof of Lemma 2.12 applied to 

GL(pJp:) would only show that ZT and r; are conjugate in GA by an element g which 

implies the k-linear transformation of p7, /& that corresponds in the basis {xl,. . . ,xn} 

to the matrix &g(ci , . . . , c,) (notation as in the proof of the mentioned lemma). But 

it is by no means clear that xi ++ cixi defines an element of r; (as one actually has 

for d sufficiently large). We do not know whether it can be shown independently that 

the conjugating element g can actually be chosen from K$? (=K!,2’). Recall that we 

need the inclusion g E K!f’ in order to show that h(“)(r) is a maximal torus of Hid’. 

(c) We have changed Demushkin’s arguments in the first part of the proof of 

Lemma 2.12 as well (the previous ones seemed non-convincing). 

(d) Step IV here is essentially equivalent to Steps 4 and 8 in [9] modulo corrections 

of several ‘inessential improperties’ (Math. Rev. 84f: 36). 

(e) Demushkin claimed in [9, Step 51 that for any embeded torus z having a stable 

point pL, the subgroup H!‘) c GL(p,/$) is a (Zariski) closed subgroup. It is just men- 

tioned in [9] that this directly follows from looking at the relations between generators 

of the monoid M(a) (we assume r = (S, a)). But it is our opinion that this claim is not 

clear at all! (This is not clear equally for any natural d.) Moreover, it is precisely the 

description of HJ2’ in the terms close in spirit to ‘looking at the relations in a monoid’ 

for the special case of rank 2 monoids that constitutes the most difficult and lengthy 

sections in [ 181. (As a result there is obtained certain information in [ 181 on the group 

of k-algebra automotphisms of k[M] for the 2-dimensional case and this information 

suffices to settle the special case of the isomotphism problem for rank 2 monoids.) 

It should also be mentioned that the present proof of the general case avoids any ref- 

erence to the structure of the automorphism group of k[M]. The point here is that this 

approach needs closedness in GL(,uJpf) of only the subgroup of HJd’ generated by 

certain pair of algebraic tori, and here general arguments (Proposition 2.16) work. I 

am grateful to B. Totaro for drawing my attention to this observation. 

(f) From the point of view of the comments above it is natural to ask the following 

two questions: 

Question 1: Assume we are given a finitely generated monoid A4 with U(M) trivial 

and a field k. Let {xi , . . . ,x,} be the minimal generating set of A4 and g : k[M] + k[A4] 
be a k-algebra automorphism such that g(xi) =cixi + rni for some ci E k \ (0) and 
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mi E $ (i E [ 1, n]), where p is the maximal ideal of k[M] generated by A4 \ { 1). Is it 

true thatxy’...x?=xy’...x$ implies ctf’...c~=c~‘...cR (ui,..., u,,ur . . . . u,EZ+)? 

Question 2: Is the subgroup Hi2’ c GL(,uJ~~) a (Zariski) closed subroup? (Notation 

as in (e).) 

The reader can easily observe that the both questions have positive answers in the 

special case of homogeneous monoids. 

3. Application to discrete Hodge algebras 

Let R be a (commutative) ring and Xi , . . . ,X,,, be variables. An ideal I c R[Xl,. . . , 

X,], which is generated by a system of monomials (i. e., of those of the type Xp’ . . .X2, 

ai E Z,), is called a monomial ideal. A discrete Hodge algebra is defined as an algebra 

of the type R[Xl, . . . ,&J/1, where I is a monomial ideal (De Concini, et al. [8]). 

Theorem 3.1. Let R be a ring and {Xl,. . . ,X,}, { Yt,. . . , Y,,} be two collections of 

variables. Assume I c R[Xl, . . . ,A’,,,] and J c R[Yl, . . . , Y,,] are monomial ideals such 

that {Xl,..., X,)171=0, {Yl,...,Y,}rlJ=@ and 

R[Xl,..., &,ll~~:RP’~,...,YnflJ 

as R-algebras. Then m = n and there exists a bijective mapping 

0:(X, ,...,X,}+{Y1,...,Ym) 

transforming I into J. 

Theorem 3.1 has the following equivalent formulation. 

Theorem 3.2. Let R, Xi, q, I and J be as above and 

R[XI ,. ..,X,]/I= R[Y ,,..., Y,] /‘J 

as R-algebras. Then m = n and there exists a bijective mapping 

[@l:{[X11,..., Knl~ + {[Yll,. . ., [Yml] 

which gives rise to an R-algebra isomorphism between the two discrete Hodge algebras 

R[Xl ,..., X,1/I and R[Yl,..., Y,]/ J, where [Xi] and [q] refer to the corresponding 

residue classes. 

In the proof we shall need the following: 

Lemma 3.3. Let A be a commutative ring and X be a variable. Assume /? c A[X], 

/?#A[X], is an ideal generated by a system of ‘non-pure’ monomials, i.e. j3 is 
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generated by elements of the type aXd for some a E A and d E Z+. If the residue 
class [X] of X in A[X]/fi is a non-zero-divisor, then fl is generated as an ideal by 
a=Anj3. 

Proof. We have to show that /I c d[X]. That means we have to show aXd E CVI[X] 

whenever aXd E p. But if aXd E /I then [a][Xld = 0 and by the condition that [X] is 

not a zero-divisor we get [a] = 0, i.e. a E a ([a] refers to the corresponding residue 

class). 0 

Proof of Theorem 3.1. Using the ‘scalar extension trick’, without loss of generality, 

we can assume R is a field (integral domain for the arguments below would actually 

suffice). 

Assume 

f :RIX1,..., &I/~+NYI,...,Y~IIJ 

is an R-algebra isomorphism. Any element 4 E R[ Yl, . . . , Y,] admits a unique canonical 

presentation as an R-linear form of ‘pure’ monomials in the r; outside J. We let 4(O) 

denote the constant term (the term of degree 0) of this expansion. Now, we put 

{h,..., b} = { 1 I i I ml(f ([Xl))(O) # 0). 

In this situation the elements f ([&I), . . . , f ([Xi,]) are not zero-divisors of R[Yl, . . . , 

Y,]/ J. Since f is an isomorphism the elements [Xi,], . . . , [Xi,] themselves are not zero- 

divisors in R[Xl , . . . ,&J/1. By (an iterated use of) Lemma 3.3 we then easily conclude 

that the ideal I is generated by the intersection 

Therefore there exists a system of pure monomials in Xi, i +! { il, . . . , ik} that generates I. 

Hence, we can write 

RK 2.. . ,JLzl/~ =A/lo[Xi,, . . . ,-xikl’ 

where A =R[{Xi}i~{i,,...,i~}l. S o we can consider the A/lo-algebra automorphism 

g:RIX1,... ,~,ll~-R[~l,...,~,lI~ 

induced by 

Xk ++& - (f(-Tk))(O). 

Then the R-algebra isomorphism 

fg:R[X,,... ,x,1/l-R[Yl,...,Y,IIJ 
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will be an isomorphism of augmented R-algebras, where we endow the two discrete 

Hodge algebras the augmented R-algebra structures induced by 

[XJ ++ 0, iE [l,m] 

and 

[Cl H 0, j E Lnl, 

respectively. Denote the corresponding augmentation ideals by p and v, respectively. 

Since R[Xt , . . . ,X,]/I carries the graded R-algebra structure determined by 

deg([XJ)= 1, iE [l,m] 

(and similarly for R[Yl, . . . , Y,]/J), we arrive at the (bottom) graded R-algebra isomor- 

phism 

s~,(R[x,,. . .,&l/Z> 
gr(fg) 

- cv-,(W,, . ., %1/J) 
= 

/ 
= z 

R[X, ,..., &,]/I ----------------------c R[Y ,,..., y,]/J. 

Since 

{Xl,..., xm} nI=O={Yl,...,Y,}nJ, 

there exists a unique graded R-algebra isomorphism h fitting in the commutative square 

with canonical horizontal epimorphisms. 

RK,. . .,%J 

W,,. . ., %I 

* R[X,,. . .,&,]/I 

I cvti3 

c W,,. . ., r,l/J 

This square, in-particular, immediately implies m = n. 

Now for each natural number d we let Id and Jd denote the ideals generated by 

I u {@I . ..X$16i 2 Oy61 +...+h,=d} 

and 

Ju{Yf’ ...Y:[dj ?O,c!& +...+&=d}, 

respectively. 

Clearly, if 

RK ,...,X,]/Z=R@Al @AZ@.. 
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and 

R[Y,,...,Y,]/f=R@& @3B* @*.. 

are the corresponding graded structures then 

and 

WI,..., Ym]/Jd=R@Bl cB...$Bd_l @O@O@..~ 

(with right-hand sides considered as graded algebras in the obvious way). From these 

observations it follows that for each d E N we have the commutative diagram 

0 - Id - W,,. . .,x,1 - R[X,,. . .,x,1& - 0 

o - Jd - NY,,. . ., r,l - R[Y,,. . ., Y,l/J, - 0 

with exact rows and vertical R-algebra isomorphisms, where Id and Jd are considered as 

R-algebras without units and the last two vertical maps are homomorphisms of graded 

R-algebras (deg(Xj) = 1 = deg( I$) and deg([&]) = 1 = deg([c)]). 
We let && denote the multiplicative monoid of all those pure monomials in the Xi 

which belong to Id. Nd is defined similarly with respect to Jd, The monoid algebras 

R[Md] and R[Nd] will be identified with the corresponding monomial subalgebras of 

R[Xl,. . . ,X,] and RIYl,. . . , Y,], respectively. Since R[Md] is a minimal (universal) 

unitary R-algebra containing Id and R[Nd] is that containing Jd, we have R[Md] M R[Nd] 

as augmented R-algebras. 

Claim. Md and Nd are jnitely generated monoids for all natural number d. 

Proof. K(Md) is the free abelian group of all Laurent monomials in the Xi. Since 

xp,... ,X,” E Md the cone C(Md), spanned by Md in [Wm, is the standard positive rect- 

angular cone (we identify II2 ~9 K(Md) with rWd). Hence by Gordan’s lemma (Lem- 

ma 2.2) kfd is finitely generated. 

The same arguments apply to Nd. 0 

Remark 3.4. Observe that the multiplicative monoid of all pure monomials in Z needs 

not be finitely generated, that is the R-subalgebra of R[_Xl, . . . ,X,] generated by R and 

I is not in general finitely generated, despite the fact that I is always finitely generated 

as an ideal. 

We continue the proof of Theorem 3.1. 
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The claim above and Theorem 2.1 (a) imply k& M Nd as monoids for all d E N. 

Since 

and 

Yl,..., yrn E K(Nd >, 

we easily conclude that for each natural number d there exists a bijective mapping 

which transforms k& into Nd. 

There exists an infinite strictly increasing sequence 

dl cd2 < ... 

such that 

Od, = ($ld2 = . . . . 

Put @ = @d, . Then @ transforms k&& into Ndt for all k E N. Therefore, 0 transforms 

n,“=, M& into n,“= I Ndk. It only remains to observe that 

cc 

n &‘&& =M 
k=l 

and 

Ndi, =N, 
k=l 

where M and N are the multiplicative monoids of all pure monomials inside I and J, 

respectively. This clearly finishes the proof. 0 

Example 3.5. Let V and W be two finite sets and dv and & be two abstract simplicial 

complexes on the vertex sets V and W, respectively. Assume k is a field and consider 

the two Stanley-Reisner rings k[Av] and k[Aw] (see [5, Ch. 51 for the definitions). If 

k[Av] M k[Aw] as k-algebras, then there exists a bijective mapping V + W transforming 

A” into Aw. This directly follows from Theorem 3.2, and this special case of the 

‘isomorphism problem for discrete Hodge algebras’ is considered in [3]. 

Example 3.6. Assume V, W, Av, Aw and k are as in the previous example. Put 

k{&} =kM4({~21~ E V}) 

and 
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where we identify the vertices with the corresponding elements in the Stanley-Reisner 

rings. 

Ji,irgen Herzog asked whether 

as k-algebras implies 

(the latter isomorphism meant in the sense of the previous example). Theorem 3.1 

gives the positive answer to this question as well. 
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